Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38611557

ABSTRACT

Tillering directly determines the seed production and propagation capacity of clonal plants. However, the molecular mechanisms involved in the tiller development of clonal plants are still not fully understood. In this study, we conducted a proteome comparison between the tiller buds and stem node of a multiple-tiller mutant mtn1 (more tillering number 1) and a wild type of centipedegrass. The results showed significant increases of 29.03% and 27.89% in the first and secondary tiller numbers, respectively, in the mtn1 mutant compared to the wild type. The photosynthetic rate increased by 31.44%, while the starch, soluble sugar, and sucrose contents in the tiller buds and stem node showed increases of 13.79%, 39.10%, 97.64%, 37.97%, 55.64%, and 7.68%, respectively, compared to the wild type. Two groups comprising 438 and 589 protein species, respectively, were differentially accumulated in the tiller buds and stem node in the mtn1 mutant. Consistent with the physiological characteristics, sucrose and starch metabolism as well as plant hormone signaling were found to be enriched with differentially abundant proteins (DAPs) in the mtn1 mutant. These results revealed that sugars and plant hormones may play important regulatory roles in the tiller development in centipedegrass. These results expanded our understanding of tiller development in clonal plants.

2.
Plants (Basel) ; 13(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38592813

ABSTRACT

The U-box protein family of ubiquitin ligases is important in the biological processes of plant growth, development, and biotic and abiotic stress responses. Plants in the genus Zoysia are recognized as excellent warm-season turfgrass species with drought, wear and salt tolerance. In this study, we conducted the genome-wide identification of plant U-box (PUB) genes in Zoysia japonica based on U-box domain searching. In total, 71 ZjPUB genes were identified, and a protein tree was constructed of AtPUBs, OsPUBs, and ZjPUBs, clustered into five groups. The gene structures, characteristics, cis-elements and protein interaction prediction network were analyzed. There were mainly ABRE, ERE, MYB and MYC cis-elements distributed in the promoter regions of ZjPUBs. ZjPUBs were predicted to interact with PDR1 and EXO70B1, related to the abscisic acid signaling pathway. To better understand the roles of ZjPUBs under salt stress, the expression levels of 18 ZjPUBs under salt stress were detected using transcriptome data and qRT-PCR analysis, revealing that 16 ZjPUBs were upregulated in the roots under salt treatment. This indicates that ZjPUBs might participate in the Z. japonica salt stress response. This research provides insight into the Z. japonica PUB gene family and may support the genetic improvement in the molecular breeding of salt-tolerant zoysiagrass varieties.

3.
Plant Sci ; 342: 112054, 2024 May.
Article in English | MEDLINE | ID: mdl-38423392

ABSTRACT

Perennial grasses seasonal nitrogen (N) cycle extends the residence and reuse time of N within the plant system, thereby enhancing N use efficiency. Currently, the mechanism of N metabolism has been extensively examined in model plants and annual grasses, and although perennial grasses exhibit similarities, they also possess distinct characteristics. Apart from assimilating and utilizing N throughout the growing season, perennial grasses also translocate N from aerial parts to perennial tissues, such as rhizomes, after autumn senescence. Subsequently, they remobilize the N from these perennial tissues to support new growth in the subsequent year, thereby ensuring their persistence. Previous studies indicate that the seasonal storage and remobilization of N in perennial grasses are not significantly associated with winter survival despite some amino acids and proteins associated with low temperature tolerance accumulating, but primarily with regrowth during the subsequent spring green-up stage. Further investigation can be conducted in perennial grasses to explore the correlation between stored N and dormant bud outgrowth in perennial tissues, such as rhizomes, during the spring green-up stage, building upon previous research on the relationship between N and axillary bud outgrowth in annual grasses. This exploration on seasonal N cycling in perennial grasses can offer valuable theoretical insights for new perennial grasses varieties with high N use efficiency through the application of gene editing and other advanced technologies.


Subject(s)
Nitrogen , Poaceae , Poaceae/metabolism , Seasons , Nitrogen/metabolism , Cold Temperature , Amino Acids/metabolism
4.
Plants (Basel) ; 13(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38337994

ABSTRACT

The TIFY family is a group of novel plant-specific transcription factors involved in plant development, signal transduction, and responses to stress and hormones. TIFY genes have been found and functionally characterized in a number of plant species. However, there is no information about this family in warm-season grass plants. The current study identified 24 TIFY genes in Eremochloa ophiuroides, a well-known perennial warm-season grass species with a high tolerance to aluminum toxicity and good adaptability to the barren acidic soils. All of the 24 EoTIFYs were unevenly located on six out of nine chromosomes and could be classified into two subfamilies (ZIM/ZML and JAZ), consisting of 3 and 21 genes, respectively, with the JAZ subfamily being further divided into five subgroups (JAZ I to JAZ V). The amino acids of 24 EoTIFYs showed apparent differences between the two subfamilies based on the analysis of gene structures and conserved motifs. MCScanX analysis revealed the tandem duplication and segmental duplication of several EoTIFY genes occurred during E. ophiuroides genome evolution. Syntenic analyses of TIFY genes between E. ophiuroides and other five plant species (including A. thaliana, O. sativa, B. distachyon, S. biocolor, and S. italica) provided valuable clues for understanding the potential evolution of the EoTIFY family. qRT-PCR analysis revealed that EoTIFY genes exhibited different spatial expression patterns in different tissues. In addition, the expressions of EoTIFY genes were highly induced by MeJA and all of the EoTIFY family members except for EoJAZ2 displayed upregulated expression by MeJA. Ten EoTIFY genes (EoZML1, EoZML1, EoJAZ1, EoJAZ3, EoJAZ5, EoJAZ6, EoJAZ8, EoJAZ9, EoJAZ10, and EoJAZ21) were observed to be highly expressed under both exogenous MeJA treatment and aluminum stress, respectively. These results suggest that EoTIFY genes play a role in the JA-regulated pathway of plant growth and aluminum resistance as well. The results of this study laid a foundation for further understanding the function of TIFY genes in E. ophiuroides, and provided useful information for future aluminum tolerance related breeding and gene function research in warm-season grass plants.

5.
Front Plant Sci ; 14: 1324820, 2023.
Article in English | MEDLINE | ID: mdl-38169671

ABSTRACT

Reasonable nitrogen fertilizer application is an important strategy to maintain optimal growth of grasslands, thereby enabling them to better fulfil their ecological functions while reducing environmental pollution caused by high nitrogen fertilizer production and application. Optimizing the ammonium (NH4 +):nitrate (NO3 -) ratio is a common approach for growth promotion in crops and vegetables, but research on this topic in grass plants has not received sufficient attention. Centipedegrass, which is widely used in landscaping and ecological protection, was used as the experimental material. Different NH4 +:NO3 - ratios (0: 100, 25:75, 50:50, 75:25, 100:0) were used as the experimental treatments under hydroponic conditions. By monitoring the physiological and morphological changes under each treatment, the appropriate NH4 +:NO3 - ratio for growth and its underlying mechanism were determined. As the proportion of ammonium increased, the growth showed a "bell-shaped" response, with the maximum biomass and total carbon and nitrogen accumulation achieved with the NH4 +:NO3 - ratio of 50:50 treatment. Compared with the situation where nitrate was supplied alone, increasing the ammonium proportion increased the whole plant biomass by 93.2%, 139.7%, 59.0%, and 30.5%, the whole plant nitrogen accumulation by 44.9%, 94.6%, 32.8%, and 54.8%, and the whole plant carbon accumulation by 90.4%, 139.9%, 58.7%, and 26.6% in order. As a gateway for nitrogen input, the roots treated with an NH4 +:NO3 - ratio of 50:50 exhibited the highest ammonium and nitrate uptake rate, which may be related to the maximum total root length, root surface area, average root diameter, root volume, and largest root xylem vessel. As a gateway for carbon input, leaves treated with an NH4 +:NO3 - ratio of 50:50 exhibited the highest stomatal aperture, stomatal conductance, photosynthetic rate, transpiration rate, and photosynthetic products. The NH4 +:NO3 - ratio of 50:50 treatment had the largest stem xylem vessel area. This structure and force caused by transpiration may synergistically facilitate root-to-shoot nutrient translocation. Notably, the change in stomatal opening occurred in the early stage (4 hours) of the NH4 +:NO3 - ratio treatments, indicating that stomates are structures that are involved in the response to changes in the root NH4 +:NO3 - ratio. In summary, we recommend 50:50 as the appropriate NH4 +:NO3 - ratio for the growth of centipedegrass, which not only improves the nitrogen use efficiency but also enhances the carbon sequestration capacity.

6.
Front Plant Sci ; 13: 1059536, 2022.
Article in English | MEDLINE | ID: mdl-36589064

ABSTRACT

Enhanced carotenoid accumulation in plants is crucial for the nutritional and health demands of the human body since these beneficial substances are acquired through dietary intake. Plastids are the major organelles to accumulate carotenoids in plants and it is reported that manipulation of a single plastid phosphate transporter gene enhances carotenoid accumulation. Amongst all phosphate transport proteins including phosphate transporters (PHTs), plastidial phosphate translocators (pPTs), PHOSPHATE1 (PHO1), vacuolar phosphate efflux transporter (VPE), and Sulfate transporter [SULTR]-like phosphorus distribution transporter (SPDT) in plants, plastidic PHTs (PHT2 & PHT4) are found as the only clade that is plastid located, and manipulation of which affects carotenoid accumulation. Manipulation of a single chromoplast PHT (PHT4;2) enhances carotenoid accumulation, whereas manipulation of a single chloroplast PHT has no impact on carotenoid accumulation. The underlying mechanism is mainly attributed to their different effects on plastid orthophosphate (Pi) concentration. PHT4;2 is the only chromoplast Pi efflux transporter, and manipulating this single chromoplast PHT significantly regulates chromoplast Pi concentration. This variation subsequently modulates the carotenoid accumulation by affecting the supply of glyceraldehyde 3-phosphate, a substrate for carotenoid biosynthesis, by modulating the transcript abundances of carotenoid biosynthesis limited enzyme genes, and by regulating chromoplast biogenesis (facilitating carotenoid storage). However, at least five orthophosphate influx PHTs are identified in the chloroplast, and manipulating one of the five does not substantially modulate the chloroplast Pi concentration in a long term due to their functional redundancy. This stable chloroplast Pi concentration upon one chloroplast PHT absence, therefore, is unable to modulate Pi-involved carotenoid accumulation processes and finally does affect carotenoid accumulation in photosynthetic tissues. Despite these advances, several cases including the precise location of plastid PHTs, the phosphate transport direction mediated by these plastid PHTs, the plastid PHTs participating in carotenoid accumulation signal pathway, the potential roles of these plastid PHTs in leaf carotenoid accumulation, and the roles of these plastid PHTs in other secondary metabolites are waiting for further research. The clarification of the above-mentioned cases is beneficial for breeding high-carotenoid accumulation plants (either in photosynthetic or non-photosynthetic edible parts of plants) through the gene engineering of these transporters.

7.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884802

ABSTRACT

Cytosolic pH homeostasis is a precondition for the normal growth and stress responses in plants, and H+ flux across the plasma membrane is essential for cytoplasmic pH control. Hence, this review focuses on seven types of proteins that possess direct H+ transport activity, namely, H+-ATPase, NHX, CHX, AMT, NRT, PHT, and KT/HAK/KUP, to summarize their plasma-membrane-located family members, the effect of corresponding gene knockout and/or overexpression on cytosolic pH, the H+ transport pathway, and their functional regulation by the extracellular/cytosolic pH. In general, H+-ATPases mediate H+ extrusion, whereas most members of other six proteins mediate H+ influx, thus contributing to cytosolic pH homeostasis by directly modulating H+ flux across the plasma membrane. The fact that some AMTs/NRTs mediate H+-coupled substrate influx, whereas other intra-family members facilitate H+-uncoupled substrate transport, demonstrates that not all plasma membrane transporters possess H+-coupled substrate transport mechanisms, and using the transport mechanism of a protein to represent the case of the entire family is not suitable. The transport activity of these proteins is regulated by extracellular and/or cytosolic pH, with different structural bases for H+ transfer among these seven types of proteins. Notably, intra-family members possess distinct pH regulatory characterization and underlying residues for H+ transfer. This review is anticipated to facilitate the understanding of the molecular basis for cytosolic pH homeostasis. Despite this progress, the strategy of their cooperation for cytosolic pH homeostasis needs further investigation.


Subject(s)
Cytosol/physiology , Ion Transport/physiology , Proton-Translocating ATPases/metabolism , Cell Membrane/metabolism , Gene Expression Regulation, Plant/genetics , Homeostasis/physiology , Hydrogen-Ion Concentration , Plants , Proton-Translocating ATPases/genetics , Protons
8.
Plant Physiol ; 187(4): 2296-2310, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34601582

ABSTRACT

AKT2 potassium (K+) channels are members of the plant Shaker family which mediate dual-directional K+ transport with weak voltage-dependency. Here we show that OsAKT2 of rice (Oryza sativa) functions mainly as an inward rectifier with strong voltage-dependency and acutely suppressed outward activity. This is attributed to the presence of a unique K191 residue in the S4 domain. The typical bi-directional leak-like property was restored by a single K191R mutation, indicating that this functional distinction is an intrinsic characteristic of OsAKT2. Furthermore, the opposite R195K mutation of AtAKT2 changed the channel to an inward-rectifier similar to OsAKT2. OsAKT2 was modulated by OsCBL1/OsCIPK23, evoking the outward activity and diminishing the inward current. The physiological relevance in relation to the rectification diversity of OsAKT2 was addressed by functional assembly in the Arabidopsis (Arabidopsis thaliana) akt2 mutant. Overexpression (OE) of OsAKT2 complemented the K+ deficiency in the phloem sap and leaves of the mutant plants but did not significantly contribute to the transport of sugars. However, the expression of OsAKT2-K191R overcame both the shortage of phloem K+ and sucrose of the akt2 mutant, which was comparable to the effects of the OE of AtAKT2, while the expression of the inward mutation AtAKT2-R195K resembled the effects of OsAKT2. Additionally, OE of OsAKT2 ameliorated the salt tolerance of Arabidopsis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Phloem/metabolism , Potassium Channels/metabolism , Salt Tolerance/physiology , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Mutation , Phloem/genetics , Potassium Channels/genetics , Salt Tolerance/genetics
9.
Clin Rheumatol ; 40(10): 3919-3927, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33966169

ABSTRACT

OBJECTIVE: To investigate the relationship between systemic inflammatory response index (SIRI) and ischemic stroke (IS) in rheumatoid arthritis (RA) patients. METHODS: Fifty-two RA patients with IS, who were admitted to Wujin Hospital Affiliated with Jiangsu University between 2015 and 2019, were selected as the study group, and 236 RA patients without IS were selected as the control group. Propensity score matching (PSM) function of SPSS 26.0 was used to carry out 1:1 propensity score matching for gender, age, blood pressure, blood glucose, blood lipid, and smoking history of patients in the two groups, and the caliper value was set as 0.02 to obtain covariate balanced samples between groups. When performing blood tests, the following are determined: rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), mean platelet volume (MPV), calculated SIRI = (neutrophil × monocyte)/lymphocyte, and completed 28-joint disease activity score (DAS28-CRP). The differences in inflammatory markers between the two groups were compared, the independent risk factors were analyzed by logistic regression, and the auxiliary diagnostic value was evaluated by the receiver operating characteristic (ROC) curve. RESULTS: A total of 48 pairs of patients were successfully matched. SIRI in the study group was higher than that in the control group (p < 0.05), and the mean platelet volume (MPV) was lower in the study group than in the control group (p < 0.05). SIRI, DAS28-CRP (r = 0.508, p < 0.01), ESR (r = 0.359, p < 0.05), and CRP (r = 0.473, p < 0.01) were positively correlated. Logistic regression analysis showed that SIRI was an independent IS risk factor in RA patients (odds ratio, 1.30; 95% confidence interval, approximately 1.008-1.678). The optimal threshold for SIRI-assisted diagnosis of patients with RA and IS was 1.62, the area under the ROC curve was 0.721 (p < 0.01), sensitivity was 54.17%, and specificity was 83.33%. CONCLUSION: SIRI was independently associated with the occurrence of ischemic stroke in patients with RA. Thus, RA patients with elevated SIRI should be closely monitored. Key points • RA patients with IS had fewer traditional risk factors such as hypertension and diabetes, while inflammatory indicators were significantly increased. • The SIRI have drawn attention in recent years as novel non-specific inflammatory markers. However, only a few studies have been conducted to investigate their value in RA. • This study completes the gaps in the research on the relationship between SIRI and the risk of IS occurrence in RA patients.


Subject(s)
Arthritis, Rheumatoid , Brain Ischemia , Ischemic Stroke , Stroke , Arthritis, Rheumatoid/complications , Biomarkers , Blood Sedimentation , Brain Ischemia/complications , Brain Ischemia/epidemiology , C-Reactive Protein/analysis , Humans , Propensity Score , Retrospective Studies , Risk Factors , Stroke/epidemiology , Systemic Inflammatory Response Syndrome
10.
Front Plant Sci ; 11: 884, 2020.
Article in English | MEDLINE | ID: mdl-32676086

ABSTRACT

Maize grows in nitrate-dominated dryland soils, but shortly upon localized dressing of nitrogen fertilizers, ammonium is retained as a noticeable form of nitrogen source available to roots. Thus in addition to nitrate, the absorption of ammonium can be an important strategy that promotes rapid plant growth at strong nitrogen demanding stages. The present study reports the functional characterization of three root-expressed ammonium transporters (AMTs), aiming at finding out functional and regulatory properties that correlate with efficient nitrogen acquisition of maize. Using a stable electrophysiological recording method we previously established in Xenopus laevis oocytes that integrates the capture of currents in response to voltage ramps with onsite stability controls, we demonstrate that all three ZmAMT1s engage NH4 + uniporting as ammonium uptake mechanisms. The K m value for ZmAMT1.1a, 1.1b, or ZmAMT1.3 is, respectively, 9.9, 15.6, or 18.6 µM, indicating a typical high-affinity transport of NH4 + ions. Importantly, the uptake currents of these ZmAMT1s are markedly amplified upon extracellular acidification. A pH drop from 7.4 to 5.4 results in a 140.8%, 64.1% or a 120.7% increase of ammonium uptake activity through ZmAMT1.1a, 1.1b, or ZmAMT1.3. Since ammonium uptake by plant roots accompanies a spontaneous acidification to the root medium, the functional promotion of ZmAMT1.1a, 1.1b, and ZmAMT1.3 by low pH is in line with the facilitated ammonium uptake activity in maize roots. Furthermore, the expression of the three ZmAMT1 genes is induced under ammonium-dominated conditions. Thus we describe a facilitated ammonium uptake strategy in maize roots by functional and expression regulations of ZmAMT1 transporters that may coordinate with efficient acquisition of this form of nitrogen source when available.

11.
Front Plant Sci ; 11: 571, 2020.
Article in English | MEDLINE | ID: mdl-32528489

ABSTRACT

AtAMT1;3 is a major contributor to high-affinity ammonium uptake in Arabidopsis roots. Using a stable electrophysiological recording strategy, we demonstrate in Xenopus laevis oocytes that AtAMT1;3 functions as a typical high-affinity NH4 + uniporter independent of protons and Ca2+. The findings that AtAMT1;3 transports methylammonium (MeA+, a chemical analog of NH4 +) with extremely low affinity (K m in the range of 2.9-6.1 mM) led to investigate the mechanisms underlying substrate binding. Homologous modeling and substrate docking analyses predicted that the deduced substrate binding motif of AtAMT1;3 facilitates the binding of NH4 + ions but loosely accommodates the binding of MeA+ to a more superficial location of the permeation pathway. Amongst point mutations tested based on this analysis, P181A resulted in both significantly increased current amplitudes and substrate binding affinity, whereas F178I led to opposite effects. Thus these 2 residues, which flank W179, a major structural component of the binding site, are also important determinants of AtAMT1;3 transport capacity by being involved in substrate binding. The Q365K mutation neighboring the histidine residue H378, which confines the substrate permeation tunnel, affected only the current amplitudes but not the binding affinities, providing evidence that Q365 mainly controls the substrate diffusion rate within the permeation pathway.

12.
Int J Mol Sci ; 21(10)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443561

ABSTRACT

Ammonium transporter (AMT)-mediated acquisition of ammonium nitrogen from soils is essential for the nitrogen demand of plants, especially for those plants growing in flooded or acidic soils where ammonium is dominant. Recent advances show that AMTs additionally participate in many other physiological processes such as transporting ammonium from symbiotic fungi to plants, transporting ammonium from roots to shoots, transferring ammonium in leaves and reproductive organs, or facilitating resistance to plant diseases via ammonium transport. Besides being a transporter, several AMTs are required for the root development upon ammonium exposure. To avoid the adverse effects of inadequate or excessive intake of ammonium nitrogen on plant growth and development, activities of AMTs are fine-tuned not only at the transcriptional level by the participation of at least four transcription factors, but also at protein level by phosphorylation, pH, endocytosis, and heterotrimerization. Despite these progresses, it is worth noting that stronger growth inhibition, not facilitation, unfortunately occurs when AMT overexpression lines are exposed to optimal or slightly excessive ammonium. This implies that a long road remains towards overcoming potential limiting factors and achieving AMT-facilitated yield increase to accomplish the goal of persistent yield increase under the present high nitrogen input mode in agriculture.


Subject(s)
Ammonium Compounds/metabolism , Gene Expression Regulation, Plant , Membrane Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/physiology , Ion Transport , Membrane Transport Proteins/genetics , Membrane Transport Proteins/physiology , Plant Leaves/metabolism , Plant Physiological Phenomena , Plant Roots/metabolism , Plants/genetics , Plants/metabolism
13.
BMC Plant Biol ; 20(1): 143, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32264840

ABSTRACT

BACKGROUND: Overuse of nitrogen fertilizers is often a major practice to ensure sufficient nitrogen demand of high-yielding rice, leading to persistent NH4+ excess in the plant. However, this excessive portion of nitrogen nutrient does not correspond to further increase in grain yields. For finding out the main constraints related to this phenomenon, the performance of NH4+ excess in rice plant needs to be clearly addressed beyond the well-defined root growth adjustment. The present work isolates an acute NH4+ excess condition in rice plant from causing any measurable growth change and analyses the initial performance of such internal NH4+ excess. RESULTS: We demonstrate that the acute internal NH4+ excess in rice plant accompanies readily with a burst of reactive oxygen species (ROS) and initiates the downstream reactions. At the headstream of carbon production, photon caption genes and the activity of primary CO2 fixation enzymes (Rubisco) are evidently suppressed, indicating a reduction in photosynthetic carbon income. Next, the vigorous induction of glutathione transferase (GST) genes and enzyme activities along with the rise of glutathione (GSH) production suggest the activation of GSH cycling for ROS cleavage. Third, as indicated by strong induction of glycolysis / glycogen breakdown related genes in shoots, carbohydrate metabolisms are redirected to enhance the production of energy and carbon skeletons for the cost of ROS scavenging. As the result of the development of these defensive reactions, a carbon scarcity would accumulatively occur and lead to a growth inhibition. Finally, a sucrose feeding cancels the ROS burst, restores the activity of Rubisco and alleviates the demand for the activation of GSH cycling. CONCLUSION: Our results demonstrate that acute NH4+ excess accompanies with a spontaneous ROS burst and causes carbon scarcity in rice plant. Therefore, under overuse of N fertilizers carbon scarcity is probably a major constraint in rice plant that limits the performance of nitrogen.


Subject(s)
Ammonium Compounds/metabolism , Fertilizers/adverse effects , Oryza/metabolism , Photosynthesis , Reactive Oxygen Species/metabolism , Ammonium Compounds/adverse effects , Gene Expression Regulation, Plant , Glutathione/metabolism , Oryza/genetics
14.
BMC Plant Biol ; 19(1): 268, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31221084

ABSTRACT

BACKGROUND: Research on plant amino acid transporters was mainly performed in Arabidopsis, while our understanding of them is generally scant in rice. OsLHT1 (Lysine/Histidine transporter) has been previously reported as a histidine transporter in yeast, but its substrate profile and function in planta are unclear. The aims of this study are to analyze the substrate selectivity of OsLHT1 and influence of its disruption on rice growth and fecundity. RESULTS: Substrate selectivity of OsLHT1 was analyzed in Xenopus oocytes using the two-electrode voltage clamp technique. The results showed that OsLHT1 could transport a broad spectrum of amino acids, including basic, neutral and acidic amino acids, and exhibited a preference for neutral and acidic amino acids. Two oslht1 mutants were generated using CRISPR/Cas9 genome-editing technology, and the loss-of-function of OsLHT1 inhibited rice root and shoot growth, thereby markedly reducing grain yields. QRT-PCR analysis indicated that OsLHT1 was expressed in various rice organs, including root, stem, flag leaf, flag leaf sheath and young panicle. Transient expression in rice protoplast suggested OsLHT1 was localized to the plasma membrane, which is consistent with its function as an amino acid transporter. CONCLUSIONS: Our results indicated that OsLHT1 is an amino acid transporter with wide substrate specificity and with preference for neutral and acidic amino acids, and disruption of OsLHT1 function markedly inhibited rice growth and fecundity.


Subject(s)
Amino Acid Transport Systems, Basic/metabolism , Oryza/growth & development , Oryza/metabolism , Plant Proteins/metabolism , Amino Acid Transport Systems, Basic/genetics , Amino Acids/metabolism , Animals , Binding Sites , Gene Knockout Techniques , Phylogeny , Plant Proteins/genetics , Xenopus
15.
Plant Physiol Biochem ; 108: 99-108, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27423220

ABSTRACT

Ammonium transporters (AMTs) are major routes for plant uptake of the NH4+-form nitrogen. Plant AMTs mediate predominantly the uptake of NH4+ and to a lesser extent, its organic analog methylammonium (MeA+). Mutagenesis studies on potential phosphorylation residues have achieved solid recognition that alteration of the phosphorylation status can result in allosteric regulation and impair the functionality of plant AMTs. However, molecular insights to the fine-tuning of a functional ammonium transporter remain less clear. In this report, we demonstrate that the rice root expressed OsAMT1;3 (Oryza sativa ammonium transporter 1;3) functions as a typical high-affinity NH4+ transporter and is weakly permeable to MeA+ using growth assays in NH4+ uptake defective yeast cells and electrophysiological measurements in Xenopus oocytes. Upon screening of six point mutations generated with the transporter, we identified two amino acid residues involved in the functional modulation of OsAMT1;3. The H199E mutation caused loss of transport activity whereas other five mutations retained the functionality of OsAMT1;3. Furthermore, the L56F mutation enabled respectively 5- and 3.5 -fold increased capability for NH4+ and MeA+ uptake with several-fold decreased affinity (Km) and accelerated Vmax values. Surprisingly, yeast cells expressing the L56F mutation shown increased Na+ toxicity leading to a speculation that enhanced Na+ permeation occurred with this mutation. The phenomenon was further supported by the observation of significant Na+ uptake current in oocytes. Our results seemingly support a speculation that the L56F mutation of OsAMT1;3 widens the substrate passage tunnel and allows enhanced permeability to NH4+ and larger ions MeA+ and Na+.


Subject(s)
Cation Transport Proteins/chemistry , Cation Transport Proteins/metabolism , Oryza/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Ammonia/metabolism , Ammonia/pharmacology , Animals , Biological Transport/genetics , Cation Transport Proteins/genetics , Cell Membrane Permeability , Electrophysiology/methods , Female , Methylamines/metabolism , Methylamines/pharmacology , Oocytes/drug effects , Oocytes/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Point Mutation , Sodium/metabolism , Sodium/pharmacokinetics , Xenopus , Yeasts/drug effects , Yeasts/genetics , Yeasts/metabolism
16.
Plant Cell Rep ; 34(2): 321-30, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25433856

ABSTRACT

KEY MESSAGE: Functional identification of a relatively lower affinity ammonium transporter, OsAMT1;1, which is a proton-independent feedback regulated ammonium transporter in rice. Rice genome contains at least 12 ammonium transporters, though their functionality has not been clearly resolved. Here, we demonstrate the functional properties of OsAMT1;1 applying functional complementation and (15)NH4 (+) uptake determination in yeast cells in combination with electrophysiological measurements in Xenopus oocytes. Our results show that OsAMT1;1 is a NH4 (+) transporter with relatively lower affinity to NH4 (+) (110-129 µM in oocytes and yeast cells, respectively). Under our experimental conditions, OsAMT1;1-mediated NH4 (+) uptake or current is not significantly modulated by extra- or intracellular pH gradient, suggesting that this transporter probably functions as a NH4 (+) uniporter. Inhibition of yeast growth or currents elicited from oocytes by ammonium assimilation inhibitor L-methionine sulfoximine indicates that NH4 (+) transport by OsAMT1;1 is likely feedback regulated by accumulation of the substrate. In addition, effects of phosphorylation inhibitors imply that NH4 (+) uptake by OsAMT1;1 is also modulated by tyrosine-specific protein kinase or calcium-regulated serine/threonine-specific protein phosphatase involved phosphorylation processes.


Subject(s)
Ammonium Compounds/metabolism , Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/metabolism , Animals , Biological Transport/drug effects , Cation Transport Proteins/genetics , Female , Genetic Complementation Test , Methionine Sulfoximine/pharmacology , Nitrogen Isotopes/analysis , Oocytes , Oryza/metabolism , Phosphorylation , Plant Proteins/genetics , Xenopus laevis , Yeasts/drug effects , Yeasts/genetics , Yeasts/metabolism
17.
Gene ; 555(2): 305-17, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-25447912

ABSTRACT

Ammonium is the main inorganic nitrogen source in paddy soil. Rice (Oryza sativa), an ammonium-preferring and -tolerant grain crop, is a valuable resource for researching ammonium-uptake mechanism and understanding the molecular networks that the plant copes with ammonium variation. To generate a broad survey of early responses affected by varied ammonium supplies in rice, RNA samples were prepared from the roots and shoots of rice plants subjected to nitrogen-free (0mM ammonium), 1mM ammonium and high ammonium (10mM ammonium) for a short period of 4h (1mM ammonium treatment as the control), respectively, and the transcripts were sequenced using the Illumina/HiSeq™ 2000 RNA sequencing (RNA-Seq) platform. By comparative analysis, 394 differentially expressed genes (DEGs) were identified in roots, among which, 143 and 251 DEGs were up- and down-regulated under nitrogen-free condition, respectively. In shoots, 468 (119 up-regulated/349 down-regulated) DEGs were found under such condition. However, with high ammonium treatment, only 63 genes (6 up-regulated/57 down-regulated) in roots and 115 genes in shoots (93 up-regulated/22 down-regulated) were differentially expressed. According to KEGG analysis, when exposed to nitrogen-free condition, DEGs participating in the carbohydrate and amino acid metabolisms were down-regulated (with 1 exception) in roots as well as in shoots, implying reduced carbohydrate and nitrogen metabolisms. Under high ammonium supply, all DEGs associated with carbohydrate and amino acid metabolisms were down-regulated in roots and to the contrary, up-regulated in shoots. Aldehyde dehydrogenase (ALDH, NAD(+)) [EC: 1.2.1.3] seemed to have played an important role in rice shoots under high ammonium condition, analysis results implicated a coordinative regulation of carbohydrate with amino acid metabolisms under nitrogen deficiency as well as the high ammonium conditions during a short period of several hours in rice. Moreover, transcripts with abundance variation might be precious gene resources in responding to different ammonium supplies in rice.


Subject(s)
Genes, Plant , Nitrogen/chemistry , Oryza/genetics , Amino Acids/metabolism , Ammonia/chemistry , Carbohydrate Metabolism , DNA, Complementary/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Roots/genetics , Plant Shoots/genetics , RNA, Plant/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...